신간 소개 <MLOps 도입 가이드>

MLOps를 다루는 도서가 출간되어 소개합니다.

MLOps의 개념부터 도입과 활용까지,
성공적인 머신러닝 운영화를 위한 실용 가이드!

오늘날 데이터 사이언스와 AI는 IT 분야뿐 아니라 제조, 구매, 유통, 마케팅, 반도체, 자동차, 식품 등 산업 전 분야에 걸쳐 기업 생존의 필수 요소로 인식되어 경쟁적으로 도입되고 있습니다. 이러한 데이터 사이언스와 AI 프로젝트의 핵심에 MLOps가 놓여 있습니다.

이 책은 비즈니스 환경에서 머신러닝 적용 실무를 담당하는 데이터 분석 팀 또는 IT 운영 팀의 관리자들을 대상으로 합니다. MLOps가 새로운 영역이라는 점을 감안하여, MLOps 환경을 성공적으로 구축하기 위한 가이드 역할을 제대로 할 수 있도록 머신러닝 전문가 9명(데이터이쿠)이 조직적 이슈부터 기술적 이슈까지 꼼꼼하게 다루었습니다.

  • MLOps 핵심 개념: MLOps를 성공적으로 실행하기 위한 원칙과 구성 요소, 이해관계자들의 역할과 책임
  • MLOps 적용 방법: 머신러닝 모델 생애주기 다섯 단계에 따라 MLOps 프로세스를 도입하는 방법 소개
  • MLOps 실제 사례: MLOps의 실제 구축 형태와 그 의미를 알 수 있도록 대표적인 비즈니스 활용 사례들 제시

상세 이미지_MLOps 도입 가이드_700px.jpg

**머신러닝 적용 실무를 담당하는 데이터 분석 팀 **
또는 IT 운영 팀의 관리자들에게
**MLOps 역량을 개발하기 위한 **
실질적인 통찰과 해결책을 제공한다!

머신러닝 기술은 이론과 학문의 영역에서 ‘현실 세계’의 영역으로 이동하는 전환점에 이르렀습니다. 전 세계의 모든 서비스와 제품에 머신러닝 기술을 적용해보려는 시도가 이어지고 있습니다. 이러한 변화가 흥미롭기는 하지만, 머신러닝 모델의 복잡한 특성과 현대적인 조직의 복잡한 구조를 조합하는 대단히 도전적인 과제입니다.

조직이 머신러닝을 실험실 수준에서 상용 환경으로 확대 적용할 때 겪는 어려움 중 하나는 유지보수입니다. 기업은 하나의 모델만 다루던 환경에서 수십, 수백 혹은 수천 개의 모델을 다루는 환경으로 어떻게 전환할 수 있을까요? 바로 이 지점에서 앞서 언급한 기술적인 복잡성과 비즈니스적 복잡성이 드러나고, MLOps가 필요합니다.

MLOps는 기업이 데이터 사이언스와 AI를 더 성공적으로 도입·운영할 수 있는 효과적인 방법론 중 하나입니다. 이 책을 통해 MLOps 역량을 개발하기 위한 실질적인 통찰과 해결책을 얻길 바랍니다.

이 책은 크게 3부로 구성되어 있습니다.

※ 1부_MLOps 개념과 필요성
MLOps라는 주제를 전반적으로 소개합니다. MLOps가 어떻게 그리고 어떤 이유에서 원칙이 되었는지, MLOps를 성공적으로 실행하려면 어떤 사람들이 MLOps에 참여해야 하는지, 그리고 어떤 구성 요소가 있는지를 다룹니다.

※ 2부_MLOps 적용 방법
머신러닝 모델 생애주기에 맞춰 모델 개발, 상용화 준비, 상용 환경 배포, 모니터링과 피드백 루프, 모델 거버넌스 등의 순서로 구성했습니다. 각 장에서는 일반적인 고려 사항과 함께 MLOps 관련 고려 사항을 다룹니다. 특히, 1부 3장에서 가볍게 소개한 주제들을 상세하게 설명하고 있습니다.

※ 3부_MLOps 실제 사례
오늘날 기업에서 운영하는 MLOps의 모습에 대한 실질적 예시를 제공하여, 독자들이 실제 구축 형태와 그 의미를 이해할 수 있도록 했습니다. 등장하는 회사명은 모두 가명이지만, 모든 사례는 실제 기업에서 MLOps와 모델 관리에 대해 겪고 있는 경험을 바탕으로 구성했습니다.

추천사

“기업 내 다양한 조직에서 폭넓게 활용하기 위해 머신러닝 프로세스에 대한 더 나은 전략과 활성화 방안을 찾고 있다면, 이 책이 정답이다.”
_아디 폴락, 마이크로소프트, 수석 소프트웨어 엔지니어

“기업 내 모델 배포 프로세스 및 시스템의 구축, 확장, 효율화 및 관리에 대한 탁월한 가이드다.”
_파룰 팬디, H2O.ai, 데이터 사이언스 에반젤리스트

“최근 다양한 머신러닝/딥러닝 기반의 모델들이 기업과 사회 문제 해결, 성과 향상을 위해 여러 분야에서 활용되고 있다. 이 책은 이러한 모델의 생애주기에 따른 효율적인 운영과 관리를 위해 MLOps의 기본적인 고려 사항과 노하우를 다루고 있다. 데이터 과학자뿐 아니라 데이터와 관련한 다른 직무를 수행하는 사람들도 최근 MLOps의 중요성을 크게 느끼고 있다. 이 책은 MLOps에 대한 기본 지식을 쌓고 다양한 사례를 확인함으로써 효율적인 머신러닝 운영을 돕는 디딤돌이 되어줄 것이다.”
_김진엽, Visa, Visa Consulting & Analytics, 이사

“머신러닝을 실제 서비스에 효과적으로 도입/운용하는 데 꼭 필요한 MLOps의 개념과 법칙, 역할과 구성 요소를 모두 담고 있다.”
_김정민, 세이클, CTO

기업에서 머신러닝 모델을 가장 효율적으로 운영하는 방법
:green_book: 『MLOps 도입 가이드』 미리보기
:paperclip: 한빛미디어
:paperclip: 교보문고
:paperclip: 예스24
:paperclip: 인터파크
:paperclip: 알라딘

좋아요 2